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ABSTRACT 
Due to the high complexity of modern internal combustion engines and 

powertrain systems, the proper calibration of the electronic control unit’s (ECU) 

parameters has a strong impact on project targets like fuel consumption, emissions 

and drivability, as well as development costs and project duration. Simulation 

methods representing the system behavior with a model can support the calibration 

process considerably. However, standard physics-based models are often not able 

to describe all effects with sufficient accuracy, or the effort to set up a detailed 

model is too high. Physics-based models can also have a high computational 

demand, so that their simulation is not real-time capable. More suited for ECU 

calibration are data-driven models, combined with Design of Experiment (DoE). 

The system to be calibrated is identified with few specific test bench or vehicle 

measurements. From these measurements, a mathematical regression model is 

built. This paper describes recently developed machine learning methods based on 

Gaussian processes. In contrast to polynomial models or neural network 

regression, Gaussian processes are able to model strongly nonlinear systems with 

high accuracy, and are robust against measurement noise and outliers. No expert 

knowledge is required for their practical application, all model parameters are 

determined automatically by probabilistic principles. The data-driven model 

replaces the real engine or vehicle in the calibration process, and combined with 

optimization methods, the best set of ECU parameters with respect to the project 

targets is identified. The short response time of Gaussian process models further 

enables their use in real-time environments, e.g. Hardware-in-the-Loop (HiL) test 

systems or even directly on the ECU. This paper shows the application of the data-

driven approach in the calibration process on several examples. 
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INTRODUCTION 
The process of calibrating the parameters of the 

engine’s electronic control unit (ECU) has a strong 

impact on project targets like fuel consumption, 

emissions, drivability, as well as development 

costs. One major challenge is the increasing 

number of engine parameters, which must be 

optimized over the entire engine operating range, in 

order to provide the best compromise between 

conflicting targets. Figure 1 shows a typical set of 

inputs and outputs considered during base 

calibration of a modern direct injection gasoline 

engine. Each new engine parameter leads to a 

multiplication of the measurement effort, if 

classical calibration methods are applied. 

Simulation methods that represent the system 

behavior by a model can support the calibration 

process considerably. Figure 2 shows the different 

phases of a standard calibration process, from the 

base calibration at the engine test bench to the test 

Figure 1: Typical parameter and optimization targets of a modern gasoline engine. 

Figure 2: Different phases of the calibration process for a gasoline engine. 
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and validation of the entire calibration. In each 

phase, the calibration engineer struggles with new 

challenges, leading to a very high measurement 

effort and an extensive use of prototypes, i.e. 

engines and complete vehicles. Appropriate 

simulation methods, where the relevant system 

behavior is represented by a model, can reduce the 

calibration effort and demand for real prototypes 

significantly. An essential prerequisite for the 

practical application is that the models have to 

provide a very high accuracy and can be configured 

with relatively low measurement and time effort. 

This excludes in most cases the use of physics-

based models. More suitable are data-driven 

models combined with a Design of Experiment 

(DoE).  

 

DESIGN OF EXPERIMENT AND DATA-
DRIVEN MODELING  

The basic idea of DoE is to characterize an 

unknown system, e.g. an internal combustion 

engine, by a data-driven mathematical model using 

a matching test plan to minimize the measurement 

effort. Compared to a full factorial test plan, the 

number of required measurements can be reduced 

by orders of magnitudes with a proper DoE, 

especially for high dimensional identification 

problems. The determination of the calibration 

parameters is done based on a trained model and the 

use of mathematical optimization algorithms. The 

overall process is depicted in Figure 3. The first 

applications of data-driven modeling and DoE in 

ECU calibration started more than a decade ago [1]. 

The combination of DoE with modern test bench 

automation methods allows a fast and simultaneous 

variation of all parameters, which further increases 

the efficiency [2]. 

The key element of the entire DoE process is the 

mathematical model. Often, polynomials or neural 

networks are used [3], but both types have 

significant disadvantages which limit their use in 

the calibration process. Polynomials are easy to 

understand and available in many commercial 

tools. The major drawback is that only a very 

simple system behavior can be described. 

Polynomials are also sensitive to single 

measurement errors, which can deteriorate the 

model if not detected as outliers. Alternatively, 

neural networks are theoretically able to describe 

any complex system behavior, but often require 

high expertise for the model configuration and 

additional validation data to avoid model over 

fitting. As a consequence of the listed drawbacks, 

DoE methods were only applied by a few experts in 

the past and limited to a small number of use cases. 

A new approach is the use of machine learning 

methods based on Gaussian processes. From a 

complete set of basis functions, a Bayesian 

approach determines automatically the set of 

functions which represents the training data with 

highest probability [4]. The function set is 

characterized by so-called hyperparameters: signal 

noise, signal strength, and a length scale for each 

input dimension D which describes the rate of 

Figure 3: Overview of the DoE process from the test plan to the optimization of the system outputs. 
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change of the output over the respective input. The 

hyperparameters are determined automatically 

from the training data based on maximum 

likelihood optimization. The final formula for the 

prediction of an output y depending on the inputs 

x1, x2, …, xD can be reduced to a summation of 

overlapping Gaussian kernel functions [5], see 

Figure 4. 

 

 

 
N represents the number of training data points, Qi 

is a combination of the signal noise and signal 

strength hyperparamters for data point i, lj is the 

length scale hyperparameter, and Xi,j stands for the 

position of the training data in the input space. This 

regression model allows a precise description of 

complex and highly nonlinear systems without over 

fitting.  

A one-dimensional example is given in Figure 5. 

The training data points for the output (y-axis) 

show a strong nonlinear behavior with respect to 

the input (x-axis) including some measurement 

noise. The upper half of Figure 5 shows the attempt 

to describe the input-output relationship with a 

polynomial model, which fails in fitting the data 

properly even with a high model order of 5. The 

lower half shows the model fit based on the 

Gaussian process approach. Here, the true 

relationship is described very well without fitting 

the noise in the data. Additionally, a locally 

resolved model variance can be derived from the 

Gaussian process algorithm [5]. This can be used to 

indicate a level of model uncertainty, which 

increases in areas with insufficiently provided 

training data points. Based on this, a 

recommendation for a valid model range can be 

derived. If the model variance exceeds a certain 

threshold, the model prediction can be classified as 

unreliable, as shown with the grey line in Figure 5. 

These areas can then be excluded from the 

subsequent calibration optimization. Also, this 

information can be used to define and collect new 

measurements to improve the model quality. The 

available information regarding model accuracy 

and validity is important for the use in series ECU 

calibration and for user acceptance.  

These highly flexible and accurate Gaussian 

process models enable an easy generation of global 

engine models for the entire operating range and all 

relevant calibration parameters. In contrast to the 

often used two-stage approach [6], engine speed 

and load can be included as a normal input 

variables. The modeling process is done in a few 

minutes on a standard PC, even for complex 

problems with more than ten input dimensions and 

thousands of training data points. 

 

 

 
Since the model accuracy depends mainly on the 

local density of the training data in the input space, 

an equal distribution of the data points is desired. 

This is provided best by a space filling DoE test 

plan such as a Sobol sequence [7]. 

 

Figure 4: Formula of the Gaussian process model for 

predicting an output y. 

Figure 5: Modeling of a complex one-dimensional 

relationship with a polynomial model of 5th order (upper 
half) and the Gaussian process algorithm (lower half). 

The dashed lines indicate the model variance. 
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GAUSSIAN PROCESS MODELING AND ITS 
APPLICATION IN ECU CALIBRATION 

The capability of building easily very precise 

data-driven models, e.g. of a global engine, enables 

the use of model-based methods for a broad range 

of calibration tasks. Therefore, in a joint project 

between ETAS and the Robert Bosch GmbH, the 

described modeling algorithms were implemented 

in a tool called ETAS ASCMO (Advanced 

Simulation for Calibration, Modeling and 

Optimization). In addition to the modeling and test 

planning, the tool provides powerful optimization 

algorithms [8, 9], an interactive visualization, and 

prognosis features tailored to different calibration 

needs. 

 

Engine Base Calibration: Emissions and 
Fuel Optimization 

The first step in the calibration process (Figure 2) 

is the steady-state optimization of the engine base 

parameters over the entire operating range with 

respect to targets like fuel consumption, raw 

emissions and combustion stability. The use of an 

accurate model based on only some hundred test 

points can reduce here the required test bench time 

significantly.  

Figure 6 shows a screenshot of a global engine 

model for a spray-guided direct injection gasoline 

engine created with ETAS ASCMO based on 500 

training data points. The shown graphs are 

belonging horizontally to the four relevant engine 

outputs and vertically to engine speed, load, and the 

different calibration parameters. The calibration 

engineer can choose any operating point of the 

engine, in this case 2000 rpm and an engine load of 

4 bars of mean effective pressure (PME), and 

analyze the influence of the calibration parameters 

regarding the relevant engine outputs. In this 

example, the seven calibration parameters are: 

injection and ignition timing, fuel pressure, rate of 

exhaust gas recirculation (EGR), timing of exhaust 

and inlet camshaft, and the swirl control valve 

(SCV). The relevant engine outputs are: fuel 

consumption, combustion stability (CoV), soot, 

and NOx emissions. The values of the calibration 

parameters, indicated by the vertical dashed lines, 

Figure 6: Visualization of the global engine behavior in ETAS ASCMO with respect to engine speed, load, and all ECU 

calibration parameters. 
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can be changed interactively. The dashed lines 

around the model prediction graph indicate the 

confidence interval, which is an important quality 

information. 

An optimization over the entire engine operating 

range can now be performed, e.g. minimizing fuel 

consumption while keeping limits for the other 

outputs. As a result, the user will get a proposal for 

the calibration of all calibration maps. Figure 7 

shows how the global engine model can be 

combined in ETAS ASCMO with vehicle and 

driving cycle data. The speed and load trajectories, 

resulting from vehicle data, and the relevant driving 

cycle can either be reduced to a list of weighted 

operating points, reflecting the duration in the 

corresponding speed/load area, or considered point 

by point. This allows a prediction of the total fuel 

consumption and cycle emissions depending on the 

current calibration. Further, a simultaneous 

optimization of all maps can be performed with 

respect to fuel consumption, emissions, local 

constraints such as noise or combustion stability, 

and a smoothness factor for the calibration maps. 

By using the analytic gradient of the model 

prediction from the Gaussian process algorithm, the 

optimization process is very fast. This allows the 

calibration engineer to create different calibration 

proposals for various trade-off scenarios within a 

few minutes. Compared to classical DoE 

approaches, significant improvements in the 

overall driving cycle fuel consumption and 

emissions of up to 4% could be proven in many 

applications [10, 11]. Since a global engine model 

is built in ETAS ASCMO, a prediction and 

optimization for any real driving cycle can be 

performed without new test bench measurements. 

 

Transient Calibration: Criteria-based 
Drivability Calibration 

The proposed modeling approach can also be used 

for transient calibration tasks such as drivability. 

One important part of the drivability calibration is 

the optimization of the so-called tip-in, a very quick 

positive actuation of the accelerator pedal (Figure 

8). Without countermeasures, the fast built up of the 

engine torque would lead to strong and 

uncomfortable oscillations of the powertrain. The 

calibration task is a multi-criteria optimization 

problem, namely to find a compromise between 

comfort and driving dynamics by determining the 

appropriate control parameters in the drivability 

function. In this case, it is sufficient to build a 

Figure 7: Driving cycle optimization in ETAS ASCMO. Combining a global engine model with vehicle data for cycle 

prognosis and calibration map optimization. 
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model for defined criteria describing the comfort 

and the dynamics. The comfort can be 

characterized by the surface area of the oscillations 

SO and the dynamics by the rise time Tr. While 

running a DoE test plan in the vehicle for the 

variations of the relevant control parameters, a 

data-driven model for SO and Tr can be built. The 

results of the multi-criteria optimization in ETAS 

ASCMO provide a trade-off curve between comfort 

and dynamics from which a best compromise can 

be selected [12]. As additional benefit, variant 

calibrations with different drivability 

characteristics can be derived without any new 

measurements. 

 
 

Transient Calibration: Model-based 
Prediction of Transient Emissions for Real 
Driving Emissions (RDE) Cycles 

Regarding possible upcoming legislatives 

guidelines for Real Driving Emissions (RDE), time 

dependent (transient) effects, e.g. in the air system 

of an engine, have a major impact on driving cycle 

emissions and have to be considered for the engine 

calibration. To model transient effects, the 

Gaussian process algorithm can be combined with 

a feedback model structure. As shown in Figure 9, 

past input and output values up to a certain time 

horizon are included as additional inputs for the 

model training. Often, the time dependencies of the 

system to be identified are not known in advance 

and it remains an open question how many time 

steps need to be fed back to support the highest 

possible model quality. To solve this, a so-called 

iterative feature selection was developed. Starting 

with one time lag (feature) at a time, a model is built 

for all input combinations. Only the one feature 

resulting in the best model quality is kept. Then, 

new features are added one by one to the set of 

selected features until there is no more significant 

improvement in model quality [13]. This process is 

implemented in the Dynamic Modeling module of 

ETAS ASCMO and provides an automatic and 

robust modeling of transient effects.  

To minimize the required measurement effort for 

the model training, a suitable transient DoE 

approach needs to be applied. It turned out that a 

space filling design, where the amplitudes and 

gradients of all inputs are varied according to a 

Sobol sequence, will result in a very good model 

quality. In order to consider known limits of the 

system under test and the desired test duration, the 

transient DoE in ETAS ASCMO further allows to 

constraint the maximum (and minimum) gradients 

and amplitude values in the test plan. 

 

 
For example, Figure 10 shows the model 

prediction of the transient engine emissions CO2, 

NOx, and soot during an arbitrary RDE driving 

cycle. The model was built with a short transient 

DoE measurement sequence collected on an engine 

test bench. The availability of such a model allows 

to significantly reduce the number of test bench 

runs for the validation of different emission 

calibrations for various driving cycle. 

Figure 8: Vehicle response for a load step (tip-in) and 

the resulting criteria-based optimization problem. 

Figure 9: Feedback structure for the data-driven 

modeling of dynamic (transient) relationships. 
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Data-driven Models in Real-time Environ-
ments: Hardware-in-the-Loop Systems 

In the final phases of the calibration process 

(Figure 2), all interactions of the ECU with the 

vehicle must be validated and tested. If model-

based methods are applied to reduce the number 

and duration of tests with real prototypes, it is 

insufficient to test single ECU functions against the 

model. Instead, a Hardware-in-the-Loop (HiL) 

system, e.g. ETAS LABCAR, is used to simulate 

the ECU’s entire environment with vehicle and 

engine models running on a real-time PC. 

 

 

 
In the classical HiL use case, the software testing, 

qualitative vehicle and engine models are 

sufficient. However, in case of using a HiL system 

for testing calibration parameters, quantitative 

models with high prediction accuracy especially for 

vehicle emissions and fuel consumption are 

required. This can be achieved by exporting the 

engine model from ETAS ASCMO and integrating 

it in the overall HiL model (Figure 11). Besides the 

data-driven engine model, additional project 

specific parameters and component models can also 

be integrated, e.g. the catalyst or sensor models. 

With a simulation step size of only a few 

microseconds, data-driven models generated in 

ETAS ASCMO provide the necessary real-time 

capabilities for HiL applications. 

 

 
Data-driven Models in Real-time Environ-

ments: Direct Implementation on the ECU 
Today’s ECUs contain many complex map-based 

models serving as virtual sensors for important 

engine reference values, e.g. engine torque, air-

mass or temperatures. Due to the increasing engine 

complexity, the development and calibration of 

such map-based models is getting more and more 

time consuming. Using data-driven models directly 

on the ECU instead of the classical map structures 

can lead to a significant gain in efficiency and 

quality. Unfortunately, standard Gaussian process 

models as used in offline calibration would require 

too much of the ECU’s available memory and CPU 

resources. To solve this problem, two measures 

were undertaken in a joint project between ETAS 

and the Robert Bosch GmbH: 

1. The original Gaussian process model (Figure 

4) contains as many exponential functions as 

the number of data points used for model 

training. This number can be significantly 

reduced by a mathematical optimization 

allowing a free relocation of the exponential 

kernel functions in the input space. Only a 

small subset of kernel functions is needed to 

maintain the original model quality. This 

Model Compression feature is available as 

add-on to ETAS ASCMO. 

2. The Robert Bosch GmbH has developed an 

Advanced Modeling Unit (AMU) for 

efficiently calculating Gaussian process 

Figure 10: Model prediction of CO2, NOx, and soot for 

an RDE driving cycle. 

Figure 11: Integrating an ETAS ASCMO engine model 

in an ETAS LABCAR HiL system. 
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models. This AMU is implemented on the 

latest ECU generation MDG1 [14].  

With these two measures, even complex models 

can be run on series engine ECUs with very low 

demand of CPU resources.  

 

CONCLUSION 
This paper presented data-driven modeling 

methods based on Gaussian processes and their use 

in different phases during the calibration of internal 

combustion engines. In practical applications, these 

methods help to reduce the required calibration 

time and the demand for engine and vehicle 

prototypes. With the integration in an easy to use 

tool environment, model-based calibration is no 

longer restricted to modeling experts and can be 

made available to a wide audience of calibration 

engineers. The developed approaches not only 

address use cases from steady-state engine 

calibration, but can also be applied to transient 

calibration and validation tasks. Furthermore, the 

implementation of compressed Gaussian process 

models directly on real-time targets has a high 

potential to significantly reduce the effort for future 

engine development and calibration. 
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